数与运算的教案通用5篇

时间:
Animai
分享
下载本文

一份精心策划的教案能够为教师提供丰富的课外活动建议,拓展学生的视野,想要在课堂上实现有效的时间管理,教案是关键的规划工具,以下是好文溜溜小编精心为您推荐的数与运算的教案通用5篇,供大家参考。

数与运算的教案通用5篇

数与运算的教案篇1

[教材简析]

分数四则混合运算的学习基础是:整数、小数四则混合运算、分数加、减、乘、除计算、以及整数小数四则运算中运算律的使用。由于有了大量的知识基础,教材安排了一个具体的问题情境,使学生在解决问题的过程中自主探索、类推出分数四则混合运算的顺序。通过两种方法的比较,发现整数的运算律在分数中同样适用。例题的设计为学生的自主学习提供了足够的空间,有利于学生形成合理的知识结构。随后的练一练让学生巩固了计算方法,提高合理灵活使用运算律的能力。练习十五中还安排了使用分数四则混合运算解决实际问题,让学生感受到学习分数四则混合运算的实际意义。

[教学目标]

1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。

2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。

3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。

[教学过程]

一、复习铺垫,重温整数四则混合运算的运算顺序。

1、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。

2、出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?

3、学生口头列式,说说运算顺序。

4、提问:两种方法,哪一种计算更简便?为什么?

4、小结:整数、小数四则混合运算的.运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的。还可以使用运算律使计算更简便。

[设计意图:温故而知新,在具体的情境中再现旧知,为新课的教学打下了稳固的知识基础,埋下了情感、思维体验的伏笔。]

二、主动探索,理解分数四则混合运算的运算顺序

1、出示例1的场景图,学生自主列出综合算式。

板书: 2/518+3/518 (2/5+3/5)18

2、交流两种算式的不同思路:列式时你是怎样想的?

3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。

这两道算式都属于分数四则混合运算。(板书课题)

[设计意图:将计算与解决问题有机结合起来,能使学生体会到计算是解决实际问题的需要,从而增强学习计算的内在需求。]

4、独立思考,尝试计算

(1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?

使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。

(2)尝试:这两道算式你能试一试吗?

学生分别计算,指名板演。

5、交流算法,理解顺序

让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。

6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。

[设计意图:利用学生已有的知识经验唤醒学生的数学思考,用自主学习的方法体会分数四则混合运算的顺序,体验数学知识的内在联系,新知识纳入知识结构的过程也就顺理成章。]

三、算中体验,把整数的运算律推广到分数。

1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?

使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。

2、观察:这两种算式有什么联系?

得出:两种方法从算式来看,其实是乘法分配律的运用。

板书:2/518+3/518=(2/5+3/5)18

3、引导:两个不同的算式,求的都是一共用彩绳多少米。从中,你得到了什么启发?

4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。

[设计意图:整数的运算律迁移到分数中来使用,让学生在计算中自主探索,充分观察,对比体验,通过自己思考,用已有的知识结构去同化、顺应新的知识,达到有意义的学习的目的。发展了学生的抽象概括能力和初步的演绎推理能力。]

四、练习巩固,正确计算。

1、练一练第1题

先让学生说说运算顺序,再计算。

反馈时:可以让学生说说自己的算法,第1题的除法和乘法你是怎么处理的?

小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。

提问:你是怎么检查结果是否正确的?

使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。

[设计意图:计算后,引导学生自觉对计算过程进行检查,分析错误的原因,养成认真计算、自觉检查的良好习惯,充分发挥每一道题的作用,培养学生认真负责的学习态度。]

2、练一练第2题

独立完成

交流时,说说应用了什么运算律或运算性质,为什么要这样算。

提问:分数四则混合运算在使用运算律时,有什么特别之处?

小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。

[设计意图:把整数的简便运算与分数的简便运算进行对比,使学生体会,使用的运算律是相同的,但分析的方法稍有区别。养成认真分析数据的习惯,提高合理灵活计算的能力。]

3、练习十五1、2题

独立完成

五、全课总结

说一说:这节课你有哪些收获或不足?

计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?

数与运算的教案篇2

教学内容:

苏教版《义务课程标准实验教科书数学》四年级(上册)第30-31页。

教学过程:

一、创设购物情境,自主解决问题

(课件出示p30图)星期天,小军和小晴一起来到商店,想买一些学习用品。你们仔细观察,商店里都有哪些学习用品?它们的单价各是多少?

根据图中提供的信息,结 合你的购物经验,你能提出一步计算的问题吗?

一生提出问题,全班同学口答。

?设计意图:数学源于生活。呈现学生熟悉的购物情境,提出数学问题,使学生体会到数学与生活的联系。】

二、探讨含有乘法和加法的混合运算的运算顺序

1.课件出示:小军说:“买3本笔记本和一个书包,你们能帮我计算出一共用去多少钱吗?”

2.学生独立解答,教师巡视。

绝大部分学生会进行分步列式,也可能会出现个别学生列出综合算式的情况。此时先让分步列式的同学汇报,教师相应板书

先算3本笔记本多少钱?

5×3=15(元)

再算一共多少钱?

15+20=35(元)

3.提问:要求“一共用去多少钱”,先要算出什么?

你们能不能把刚才这两个算式合并成一个算式呢?

给学生尝试列出综合算式的时间和空间,允许讨论和交流,然后板书:5×3+20

4.(教师手指5×3+20)像这样的算式,它是由两个算式合在一起的一道两步算式,我们叫它综合算式。在这个综合算式里,5×3的积表示什么?20又表示什么?在计算时要先算哪一步?得数是多少?这个得数表示什么意思?

指出:在计算综合算式时,为了看清楚运算的过程,一般都要写出每次计算的结果,用递等式表示。这一步可以这样写:在第二行先写上等号(为便于第二行的算式与第一行的算式对齐,第二行的等号要写在算式稍左的位置),再写上第一步的得数,还没计算的一步要照抄下来。

板书如下(边板书,边说明书写位置)

5×3+20

=15+20

提问:接下来算什么?得数是多少?该怎么写?

指出:第二步要再写等号,等号与上面的等号对齐,然后在等号后面写出得数。

根据学生回答,完成板书。

5×3+20

= 15+20

=35(元)

5.提问:如果我们把综合算式列成这样:20+5×3,可以吗?

让学生明确:要求一共用去多少钱,就是把一个书包和3本笔记本的总价合起来,所以符合题意,是可以的。

在这个综合算式里,要先算哪一步?得数是多少?为什么也要先算5×3?

让学生自己仿照上面的书写格式进行脱式计算,教师巡视,捕捉错误资源。

可能出现的脱式计算有

①20+5×3

=15+20

=35(元)

②20+5×3

=25×3

=75(元)

③20+5×3

=15

=35(元)

④20+5×3

=20+15

=35(元)

6.出示学生作业,并逐一讲评。

引导学生思考:通过这道综合算式的计算,你认为在脱式计算时要注意什么?

7.比较5×3+20和20+5×3

=15+20 =20+15

=35(元) =35(元)

你有什么发现?学生讨论交流。

小结:在一道既有乘法又有加法的算式里,无论乘法在前还是乘法在后,都要先算乘法,再算加法。像这样含有两种或两种以上的运算,通常叫混合运算。这节课我们就来研究怎样进行混合运算。(板书课题:混合运算)

?设计意图:数学课是抽象的,有时甚至是乏味的,尤其是计算课。为了激发学生兴趣,本环节设计中给学生留有思考的空间和时间,这样学生参与的`时间就多,学生发表的观点就多,学生的自信心得到了满足。】

三、探讨合有乘法和减法的混合运算的运算顺序

1.谈话:同学们真爱动脑筋,帮助小军解决了问题,小军谢谢你们。(同时课件出示:小晴说:我也想请你们帮忙,我买2盒水彩笔,付了50元,谁能帮我计算出“应找回多少元”呢?)

谁先说说准备怎么来解决这个问题?

2.学生独立列出综合算式,再把自己的解题思路和同桌交流。

全班交流:你们是怎样列出综合算式的?为什么么?

谈话:这道题含有哪些运算?与前面的综合算式比较有什么不同?应该怎样计算?现在你能用脱式进行计算吗?

学生尝试计算,教师巡视指导,捕捉错误资源。

可能出现的脱式计算有

①50-18×2

= 50-36

=14(元)

②50-18×2

=32×2

=64(元)

③50-18×2

=36

=14(元)

④50-18×2

=36-50

=14元)

根据学生的计算情况,相应进行讨论评价。

3.提问性小结:在一道既有乘法又有减法的混合运算中,我们在脱式计算时要注意些什么?要按什么顺序进行计算?

数与运算的教案篇3

教材说明

学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体(两人、两车、两船等)的运动情况。这里以相遇问题为主,研究两个物体在运动中的速度、时间和路程之间的数量关系。两个物体运动的情况是多种多样的,有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是较困难的。本册教材的重点是教学两个物体相向运动的应用题。其中又以“相遇求路程”和“相遇求时间”两种为主。关于两物体相遇,求其中一个物体的运动速度的应用题,放在后面,用列方程的方法解答。

学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。为此教材首先出现一个准备题,通过图示来说明什么叫做“相向而行”。接着通过列表分析了每经过1分、2分、3分后,两个人之间距离的变化,让学生理解什么是“相遇”。然后再通过例3、例4教学“相遇求路程”和“相遇求时间”的应用题。

在例3中,教材通过图示着重说明了小强和小丽两人走的路程的`和就是他们两家之间的路程。但是解答方法可以不同。第一种解法是先求两人各自走多少米,再加起来。这种解法思路较清楚,学生容易理解。第二种解法稍难一些,但是有了准备题做基础,学生就能比较好理解为什么要先求每分钟两人所走的路程的和。这种解法不仅比第一种解法简便,而且是教学例4的基础。

在例4中,教学“相遇求时间”的应用题。这恰好是利用例3中的数量关系进行逆运算。教材没有再详细地进行分析,只是提出启发性问题,让学生想应该怎样解答。

在练习十四中,除了编排了相向运动的相遇问题以外,还有一些稍有变化的题目。例如:相背行驶、不同时出发、间接给出某一车的速度等,为的是扩展学生的经验,让学生更多地熟悉有关两个物体运动变化时的数量关系,同时也防止学生在解题时死套类型或公式。

教学建议

1.这部分内容可以用3课时进行教学。完成练习十四中的习题。

2.教学例3之前,可以先复习速度、时间和路程之间的数量关系。然后说明,以前我们都是研究一个物体运动的速度、时间和路程的关系。现在我们要研究两个物体运动的速度、时间和路程的关系。接着,出示第54页上面的准备题,通过画图或者让两个学生演示,相对走一走,说明什么叫做“同时出发”和“相向而行”。再结合图示或学生的演示,看每分两人距离的变化,让学生在图下面的表中填写数目。学生填完表以后,教师可以组织学生分析表中各个数量之间的关系,弄清两人在相对行走的过程中,经过1分、2分、3分后,每个人走过的米数和两人之间的距离有什么关系。最后再弄清什么叫做“相遇”,相遇时,两个人走过的路程和两家之间的距离有什么关系。

3.通过例3教学相向运动求路程的应用题时,可以画出线段图来帮助学生弄清题意,使学生看到小强和小丽在相遇时两人走过的路程的和,就是他们两家之间的距离。然后,可以提问:“怎样才能求出两人走过的路程的和呢?”可以先让学生试着列式计算,然后组织讨论。使学生明确,先分别求出两人各自走过的路程,也就是各自从家到学校的路程,再加起来就是两家之间的路程。教学完第一种解法后,可以让学生联系准备题中分析过的数量关系想一想,在这题中由于两人同时出发,那么每经过1分钟两人之间的路程有什么变化,到相遇时怎样?求两家之间的路程还可以怎样算?引导学生列出第二种算式计算。做完后可以让学生说一说自己是怎样分析和解答的。在这之后,还可以让学生比较一下两种解法,想一想它们之间有什么联系。从数量关系上看,第一种解法是用两人各自的速度乘时间,得出两人各自走的路程,然后再加起来;第二种解法是根据两人同时出发后相遇,时间相同,可以先算出两人每分钟一共走多少米,也就是“速度和”,再乘时间。从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。然后,通过例3下面“做一做”中的习题和练习十四中第1~3题,使学生巩固所学的知识。

4.通过例4教学相向运动求相遇时间的应用题。教学时,可以先让学生自己解答复习题。复习前面刚学过的两人相遇求路程的应用题。然后再把条件和问题改成例4,并画图表示出条件和问题,然后引导学生想,已知两地相距270米,又知道两人各自的速度,能不能求出相遇的时间?并且联系例3的第二种解法,启发学生想,“每经过1分钟两人之间的路程有什么变化?”“到相遇时两人共走了多少米?”“那么经过多少分钟两人可以走完这270米,可以怎样计算?”让学生试着列式解答。然后找几个学生说一说自己是怎样分析解答的。在学生做完例4下面“做一做”中的习题以后,订正时也要找几个学生分析一下自己的解法。

数与运算的教案篇4

教学内容:例1、例2(只含有同一级运算的混合运算)

教学目标:1.使学生进一步掌握含有同一级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学重、难点:掌握含有同一级运算的运算顺序.感受解决问题的一些策略和方法。

教学用具:图.例1挂图.

教学过程:

一、导入(图引入,观察图,根据条件提出问题。)

1.说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?(组织学生提问并对简单地问题直接解答。)

2.根据图中提出的信息,你能提出哪些问题,怎样解决?(可补充条件再提问。)

滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?

“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?

(先小组交流,再全班交流。提示学生可以自己进行条件的补充。)

二、新授

1.小组4人对黑板上的题目进行分配解答。(引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。)

2.小组内互相说说你是怎样解答的?(教师巡视并对学生的叙述进行指导。)

3.全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。

(1)71-44+8571-44表示中午44人离去后还剩多少人

=27+85加上到来的85人,就是现在滑冰场有多少人

=113(人)

(2)987÷3×66÷3×987

=329×6=2×987

=1974(人)=1974(人)

第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)

第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。引导学生进一步理解“照这样计算”的意思。

强调:可用线段图帮助理解。

教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。

4.巩固练习

(1)根据老师提供的情景编题。a加减混合。乘车时的上下车问题,图书馆的借书还书问题,b速度、单价、工作效率(先个人编题,再两人交换。小组合作,减少重复练习。)

(2)做一做1、2

三、小结

学生就本节课的学习内容进行汇报。

这节课我们解决了很多问题,你们都有什么收获?

教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)

运算顺序为已有知识基础,让学生进行回忆概括。

四、作业

1—4

板书设计:四则运算

1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。照这

又有85人到来。现在有多少人在滑冰?样计算,6天预计接待多少人?

72-44+85(1)987÷3×6(2)6÷3×987

=27+85=329×6=2×987

=113(人)=1974(人)=1974(人)

运算顺序:在没有括号的算式里,如果只有加、减法或者

只有乘、除法,都要从左往右按顺序计算。

数与运算的教案篇5

教学内容:教材第49页中的例3及相关内容。

教学目标:

1.让学生经历含有小括号的混合运算的运算顺序的探索过程,明白“算式里有括号的,要先算括号里面的”的道理。

2.理解并掌握含有括号的混合运算的运算顺序,并能正确运用运算顺序进行计算。

3.在解决问题的过程中,让学生充分体会“小括号”在混合运算中的作用。

4.培养学生独立思考、独立解决问题和积极参与学习活动的能力。

目标解析: 在算式的比较中唤起学生已有的知识经验,让学生经历含有括号的混合运算的运算顺序的探索过程,并在计算、比较中体会“小括号”在混合运算中的作用。

教学重点:掌握含有括号的混合运算的运算顺序。

教学难点:体会小括号的作用,会列综合算式来解决问题。

教学准备:课件等。

教学过程:

一 、复习旧知,导入新课。

(一)计算(课件出示出示下面各题) 75-36+24 25-20÷5 6×8-5

1.指生说说每题先算什么,再算什么。

2.学生独立计算,并指生板演,然后全班交流,明确每题的运算顺序。

(二)说出各题的运算顺序并计算(课件出示下面各题) (1)10-5+3= (2)7+(7-6)= 10-(5+3)= 7+7-6=

1.学生独立计算,把先算的一步画上横线。

2.比较算式,全班交流。

(1)每组中上、下两题有什么相同点和不同点?

(2)为什么数字相同,运算符号相同,可运算顺序不一样呢? 3.引导学生归纳,初步明白运算顺序:一个算式里有括号的,要先算括号里面的。

(三)导入新课,并板书课题 。

二、自主探究,学习新知。

(一)尝试练习,引出规定。

1.脱式计算。(课件出示例3) 7×(7-5) (77-42)÷7

2.学生独立完成,同时指生板演,教师巡视进行个别指导。

3.这两道题有什么相同之处?(都含有小括号)

4.引导学生归纳:算式里有括号的,要先算括号里面的。

(二)变式练习,形成对比 。

1.脱式计算。(课件出示下面题目) 7×7-5 77-42÷7

2.指生说说各题的运算顺序,然后独立完成,同时指生板演,教师巡视进行个别指导。

3.比较算式。 7×(7-5) (77-42)÷7 7×7-5 77-42÷7 (1)上、下两个算式有什么不同? (2)在进行脱式计算时要注意什么? (3)小括号在这里起到什么作用?(改变运算顺序)

三、巩固深化,综合应用 。

(一)计算(课件出示教材第49页“做一做”第1题)

1、76-(12+25)(12-5)×3 48÷(8-2) 34-(28-13) 6×(7+2) (88-56)÷8 1.这6道题有什么相同点?

2.有括号的算式,按怎样的.运算顺序进行计算?

3.学生独立完成,指生板演,教师巡视指导,最后全班交流。

(二)说出各题的运算顺序并计算(课件出示教材第49页“做一做”第2题)

4+5×7 (72-18)÷9 24÷4+2 (4+5)×7 72-18÷9 24÷(4+2)

1.每组中上、下两题有什么相同点和不同点? 2.学生独立完成,体会“小括号”在混合运算中的作用。

(三)先填空,再列综合算式。(出示教材第49页“做一做”第3题)

1.学生独立完成,指生板书综合算式,教师巡视指导。

2.全班交流:什么时候需要加“小括号”?

(四)看图列式计算(出示教材第52页第13题)

小明有35元钱,买一个魔方用了3元,剩下多少钱?如果用剩下的钱买8元一个的笔袋,可以买几个?

1.学生读题,理解题意。

2.学生独立完成,指生板演,教师巡视指导。

3.全班交流,重点说明:要求可以买几个笔袋,必须要求出剩下的钱。

4.拓展提高:有能力的学生也可引导他们直接求第二问。

四、课堂小结。

今天这节课我们学习了什么知识?与前面学习的混合运算有什么不同?计算时要注意什么?

数与运算的教案通用5篇相关文章:

教师的教案通用5篇

认识树的教案通用5篇

小鱼的梦教案通用5篇

消防的教案通用5篇

中班雪的教案通用5篇

小班有关电的教案通用5篇

中班横的认识教案通用5篇

春天的来了教案通用5篇

娃娃的家小班教案通用5篇

吹泡泡的大班教案通用5篇

数与运算的教案通用5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
143337