教案是教师引导课程的有力工具之一,教案应当鼓励学生思考和探究,而不仅仅是传授知识,好文溜溜小编今天就为您带来了长方体正方体教案6篇,相信一定会对你有所帮助。
长方体正方体教案篇1
【教材分析】
苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。
在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。
【教学片段】
师:刚才,同学们动脑筋有条理地数出了长方体有─??
生(齐):6个面,12条棱,8个顶点。
师:我们的研究不能满足于“是什么”,还要探究“为什么”。
(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)
师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?
(学生仔细打量眼前的长方体模型,积极探索着答案。)
生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。
师:那应该怎样算呢?
生(齐):6×4÷2=12条棱。
师:你现在也能提一些“为什么”的问题吗?
生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?
师:问得好!你有答案吗?
生1:我有答案,但想让其他同学回答。
生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。
师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?
生1:能不能由棱的条数推算出顶点的个数、面的个数?
生2:由顶点的个数是不是也能推算出面的个数和棱的条数?
师:真会提问题!同学们有兴趣研究吗?
(学生兴致勃勃地研究并汇报了两个问题。)
师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?
生1:都先算出了24。这是为什么?
(学生陷入了沉思,不一会儿,陆续举起手。)
生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。
生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。
师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。
……
师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?
生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。
师:反过来呢?
生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。
师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。
【教学反思】
一、数学学习是经验的,也是推理的
新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。
二、空间观念是具象的,也是关系的
一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的'观念基础。
三、课堂思考是个体的,也是群体的
学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。
长方体正方体教案篇2
教学目标:
1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。
2、在操作中认识长、宽、高和正方体的棱长。
3、培养学生的空间想象能力和空间观念。
教学重难点:
通过实物认识长、正方体,了解长(正)方体的特征。
教学过程:
一、复习提问
请同学们回忆一下,我们已经学过哪些平面图形?长方形和正方形各有什么特征?这两种平面图形之间有什么关系?我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)
二、探究新知
(一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的生活中你还见过哪些物体的形状是长方体的?学生举例。我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。
(二)认识长方体。
1.教师拿出火柴盒的模型,说明面、棱和顶点。
2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。
面棱顶点长方体数量形状大小数量长度数量位置
(1)探究完成实验报告。
(2)汇报讨论结果。
(3)认识长方体的长、宽、高。
4.引导学生指出自己手中学具的长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。
5.练习:要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的长、宽、高是多少厘米。
(教具)
(三)认识正方体
1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。独立观察提纲:
(1)数一数,正方体有几个面?每个面是什么形状?相对的面的形状、大小有什么特点?
(2)摸一摸,正方体有多少条棱?它们的长度相等吗?
(3)找一找,正方体有几个顶点?独立填写实验操作报告:面棱顶点正方体数量形状大小数量长度数量位置1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征2.比较长方体和正方体有何异同?相同点:6个面、12条棱、8个顶点。不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。3.引导学生认识长、正方体的关系:
(四)新课小结
这结课我们学习了什么内容?你还有什么问题?
三、看书质疑(略)
四、巩固练习
(1)长方体和正方体都有6个面,12条棱,8个顶点。()
(2)长方体的六个面都是长方形。()
(3)正方体是由六个正方形组成的图形。()
(4)正方体是特殊的长方体。()
长方体正方体教案篇3
教学目标
1.理解长方体和正方体表面积的意义.
2.理解并掌握长方体和正方体表面积的计算方法.
3.培养和发展学生的空间观念.
教学重点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学难点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件.
学具:长方体、正方体纸盒、剪刀.
教学过程
一、复习准备.
(一)口答填空.
1.长方体有个面,一般都是,相对的面的相等;
2.正方体有个面,它们都是,正方形各面的相等;
3.这是一个,它的长厘米,宽厘米,高厘米,它的棱长之和是厘米;
4.这是一个,它的棱长是厘米,它的棱长之和是厘米.
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小.(板书课题:)
二、学习新课.
(一)长方体和正方体表面积的意义.
1.教师提问:什么叫做面积?
长方体有几个面? 正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积.
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积.
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法【演示课件长方体的表面积】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长宽2
前后面:长高2
左右面:高宽2
3.练习解答例1.
例1.做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4.巩固练习.
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面.
列式:43+42.52+32.52
(三)正方体表面积的计算方法【演示课件正方体的表面积】
1.教师提问:正方体的表面积如何求吗?
学生:棱长棱长6
2.试解例2.
一个正方体纸盒,棱长3厘米,求它的表面积.
=96
=54(平方厘米)
答:它的表面积是54平方厘米.
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面.列式:
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,
审题时要分清求的是哪几个面的和.
3.巩固练习:一个正方体的面积是1.2分米,求它的表面积.
三、巩固反馈.
1.一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2.一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3.判断正误,并说明理由.
(1)长方体的三条棱分别叫它的长、宽、高.
(2)一个棱长4分米的正方体,它的表面积是: =48(平方分米)
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小.
四、课堂总结.
什么是长、正方体的表面积?长、正方体的表面积如何计算?
五、课后作业 .
1.一个长方体的形状大小如下图:
它上、下两个面的面积分别是多少平方分米?
它前、后两个面的面积分别是多少平方分米?
它左、右两个面的面积分别是多少平方分米?
这个长方体的表面积是多少平方分米?
2.一个长方体铁盒,长18厘米,宽5厘米,高12厘米.做这个铁盒至少要用多少平方厘米铁皮?
六、板书设计
长方体正方体教案篇4
一、活动目标:
1、认识正方体与长方体,区别两者的不同。
2、能熟练地运算7以内的加减法。训练思维的灵活性和敏捷性。
二、活动准备:
7以内加减式题若干、正方体、长方体的积木各若干、每人一张作业图、一张制作正方体的纸。
三、活动过程:
1、出示7以内的加、减法式题,集体、分组、个别的进行运算练习。
2、认识正方体与长方体:
(1)、观察:每人三块积木(一块正方体、两块不同的长方体),让幼儿进行观察,找出每块积木在形体上的特点。如:三块积木各有几面?教师在幼儿观察的基础上告诉幼儿:六面都是同样大小的正方体;长方体也有六个面,但不是每一面都是正方形,有的六面都是长方形,有的四面是长方形,两面是正方形。取出两种不同的长方体让幼儿观察。
(2)、找找正方体与长方体。幼儿在桌上的一堆积木中,根据教师的指令,拿出正方体或长方体的积木。
幼儿运用积木建构简单物体。请幼儿数数自己用了几块正方体的积木,几块长方体的积木。
(3)、想一想。教室里、幼儿园里有那些东西像正方体,那些东西像长方体?
3、幼儿操作活动:
(1)、每人一张作业图。数数每一个图形是由几块积木组成的,并在旁边的圈中写上相应的'数字。
(2)、每个幼儿用准备好的纸制作一个正方体。
4、教师点评幼儿操作结果,并对整个活动进行小结。
长方体正方体教案篇5
教材分析
“长方体和正方体的认识”这部分内容是在学生过去初步认识长方体和正方体的基础上,进一步教学的。这是学生比较深入地研究立体几何图形的开始。由研究平面图形扩展到研究立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。
为了使学生较好地掌握长方体和正方体的特征,逐步形成空间观念,教材强调要学生自己多动手。除了让学生通过看一看,摸一摸,数一数,量一量,来认识长方体和正方体的特征以外,还要求学生动手用硬纸板做一长方体和正方体,这样既巩固了所学的知识,也为后面学习长方体和正方体的表面积和体积做了准备。
学情分析
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的`空间观念,提高学生看立体图的能力。
教学目标
情感、态度目标:
1.在合作中发现长方体的特征,使学生感受到学习的乐趣。
2.通过寻找生活中的长方体,使学生感受到数学来源于生活,并应用于生活中。
知识、技能目标:
1.使学生知道长方体的面、棱、顶点的含义。
2.通过观察、操作等活动掌握长方体、正方体的特征,知道它们之间的关系,认识长方体的长、宽、高(正方体的棱长)。
过程、方法目标:
1.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
2.渗透子集思想,并进行辩证唯物主义的启蒙。
教学重点和难点
探索、发现长、正方体的特征及长、正方体的关系,认识长方体的长、宽、高(正方体的棱长)。
教学过程
长方体正方体教案篇6
一、教学目的
1.通过学生的自主发现掌握长方体的特征,会辨认长方体。
2.培养学生动手操作的能力,观察能力和抽象、概括能力。
3.精心组织学生活动,激发学生学数学的兴趣,体现数学充满着探索与创新,感受数学的严谨性以及数学结论的确定性。
二、教学重点
掌握长方体的特征。
三、教学难点
建立立体图形的空间观念。
四、教具准备
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。
学具:长方体和正方体的纸盒。
五、教学过程
1.分类、操作、引出新知
(1)教师出示一幅图:你能将它们根据一定标准分类吗?
(2)师生共同概括:像粉笔盒等长方体和正方体,和排球、土豆等都占据一定空间把它们称为立体图形。
请同学们说说在日常生活中哪些物体的形状是长方体。
(板书:长方体的认识)
长方体我们从哪些方面来认识呢?
(3)拿出一块橡皮,横切一刀,露出一个面,让学生触摸,并说说感觉,教师明确这部分叫面。再切一刀,再让学生触摸两面相交的线,说出感觉,明确这在立体图形中叫做棱。什么叫棱?
将橡皮的一个面扣放在桌面上,与两个面垂直再切一刀,触摸三条棱相交的点,说出感受,明确它叫顶点。什么叫顶点?
(4)找实物指出它的长、宽、高。
今天,我们就从面、棱、顶点三个方面来学习长方体的认识。
2.实践操作,探究新知
(1)认识长方体的特征。
那么长方体的特征是什么?请同学们自己数一数、量一量、比——比后,完成表格。
(提示:放手让学生运用各种感官和学习用具独立探究、自主发现面、棱、顶点的知识。)
(2)教师巡回指导,指导要点如下:
①数面、棱、顶点时,如何数比较科学。
②采用多种学习方法。
(提示:如测量、计算、比较及用身体某个部分去接触面、棱、顶点等。)
③独立填写“我的发现”一表。
面
棱长
顶点
(学生在学习时,采用动手实践,自主探索,多种学习方法,既学到了知识又培养了能力。)
汇报:师生共同归纳。
(除了各部分的数量外,还要引导学生认识。)
a.按棱的长度可分为3组,每组内4条棱平等且长度相等;
b.相交于一个顶点的棱有3条,长度不一定相等;
c.相交于一个顶点的`3条棱的长度分别叫长方体的长、宽、高;
d.长方体的形状、大小是由长方体的长、宽、高决定的;
e.面的特殊情况。
完成做一做,反馈订正。
小结。
五、课堂练习
拿一个火柴盒量一量,它的长、宽、高各是多少?然后说一说每个面的长和宽是多少?计算棱长总和。
综合练习
(1)长方体的六个面一定是长方形。
(2)长方体的三条棱长的长度分别叫做长方体的长、宽、高。
(3)有六个面、十二条棱、八个顶点的形体一定是长方形。
(4)长方形纸是长方形不是长方体。
(5)有6个面,且6个面都是长方形,它一定是长方体。
实践与应用
(1)一个长方体的棱长总和是96厘米,已知长是8厘米,高是7厘米,宽是多少厘米?
(2)用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多少厘米?
(3)用一根长100厘米的铁丝,做成一个长·9厘米,宽6厘米,高4厘米的长方体后,还剩多少厘米?
长方体正方体教案6篇相关文章: