教师通过写教案能够更好地关注学生的学习成长和发展,为他们的未来发展奠定基础,教案需要教师对某一阶段的教学内容进行系统的整理和归纳,下面是好文溜溜小编为您分享的三角形教案优质6篇,感谢您的参阅。
三角形教案篇1
全等三角形教案
1.只给定一个角时:
2.给出的两个条件可能是:一边一内角、两内角、两边.
可以发现按这些条件画出的三角形都不能保证一定全等.
五、课堂小结
我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(sss) 边角边(sas) 角边角(asa) 角角边(aas)
六、布置作业
必做题:课本p44页习题12.2中的第6,选做题:第11题
七、板书设计
课 题 :12.2.4三角形全等的判定《4》
?教学目标】:
知识与技能:直角三角形全等的条件:“斜边、直角边”.
过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.
情感态度与价值观:通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边.边角边.角边角边后的一节课、根据直角三角形的特点、探讨出 “hl”.学生一定能理解。
课前准备 全等三角形纸片、三角板、
?教学过程】:
一、提出问题,复习旧知
1、判定两个三角形全等的方法: 、 、 、
2、如图,rt△abc中,直角边是 、 ,斜边是
3、如图,ab⊥be于c,de⊥be于e,
(1)若∠a=∠d,ab=de,
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
(2)若∠a=∠d,bc=ef,
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
(3)若ab=de,bc=ef,
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
(4)若ab=de,bc=ef,ac=df
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
二 、创设情境,导入新课
如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放)
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
(1)[生]能有两种方法.
第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“aas”可以证明两直角三角形是全等的.
第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“asa”或“aas”,可以证明这两个直角三角形全等.
可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.
[师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?
三、探究
做一做:
已知线段ab=5c,bc=4c和一个直角,利用尺规做一个直角三角形,使∠c=90°,ab作为斜边.做好后,将△abc剪下与同伴比较,看能发现什么规律?
(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体演示,激发学习兴趣).
作法:
第一步:作∠mcn=90°.
第二步:在射线cm上截取cb=4c.
第三步:以b为圆心,5c为半径画弧交射线cn于点a.
第四步:连结ab.
就可以得到所想要的rt△abc.(如下图所示)
将rt△abc剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.
可以验证,对一般的直角三角形也有这样的规律.
探究结果总结:
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“hl”).
[师]你能用几种方法说明两个直角三角形全等呢?
[生]直角三角形也是三角形,一般来说,可以用“定义、sss、sas、asa、aas”这五种方法,但它又具有特殊性,还可以用“hl”的方法判定.
[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.
四、例题:
[例1]如图,ac⊥bc,bd⊥ad,ac=bd. 求证:bc=ad.
分析:bc和ad分别在△abc和△abd中,所以只须证明△abc≌△bad,就可以证明bc=ad了.
证明:∵ac⊥bc,bd⊥ad
∴∠d=∠c=90°
在rt△abc和rt△bad中
∴rt△abc≌rt△bad(hl)
∴bc=ad.
[例2]有两个长度相等的滑梯,左边滑梯的高ac与右边滑梯水平方向的长度df相等,两滑梯倾斜角∠abc和∠dfe有什么关系?
[师生共析]∠abc和∠dfe分别在rt△abc和rt△def中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.
证明:在rt△abc和rt△def中 又∵∠def+∠dfe=90°
∴∠abc+∠dfe=90° 所以rt△abc≌rt△def(hl)
∴∠abc=∠def
即两滑梯的倾斜角∠abc与∠dfe互余.
五、课时小结
至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义 2.边边边(sss) 3.边角边(sas)
4.角边角(asa) 5.角角边(aas) 6.hl(仅用在直角三角形中)
六、布置作业
必做题: 课本p44页习题12.2中的第7,8,选做题:12,13题
七、板书设计
三角形教案篇2
教学目的
1、理解三角形、三角形的边、顶点、内角、外角等概念。
2、会将三角形按角分类。
3、理解等腰三角形、等边三角形的概念。
重点、难点
1、重点:三角形内角、外角、等腰三角形、等边三角形等概念。
2、难点:三角形的外角。
教学过程
一、引入新课
在我们生活中几乎随时可以看见三角形,它简单、有趣,也十分有用,三角形可以帮助我们更好地认识周围世界,可以帮助我们解决很多实际问题。
本章我们将学习三角形的基本性质。
二、新授
1、三角形的概念:
(1)什么是三角形呢?
三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边。如图:ab、bc、ac是这个三角形的三边,两边的公共点叫三角形的顶点。(如点a)三角形约顶点用大写字母表示,整个三角形表示为△abc.
a(顶点)
边
b c
(2)三角形的内角,外角的概念:每两条边所组成的角叫做三角形的内角,如∠bac.
每个三角形有几个内角?
三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中∠acd是∠abc的一个外角,它与内角∠acb相邻。
a
外角
b c d
与△abc的内角∠acb相邻的外角有几个?它们之间有什么关系?
练习(1)下图中有几个三角形?并把它们表示出来。
a
d
b c
(2)指出△adc的三个内角、三条边。
学生回答后教师接着问:∠adc能写成∠d吗?∠acd能写成∠c吗?为什么?
(3)有人说cd是△acd和△bcd的公共的边,对吗?ad是△acd和△abc的公共边,对吗?
(4)∠bdc是△bcd的什么角?是△acd的什么角?∠bcd是△acd的外角,对吗?
(5)请你画出与△bcd的内角∠b相邻的外角。
2、三角形按角分类。
让学生观察以下三个三角形的内角,它们各有什么特点?并用量角器或三角板加以验证。
1 2 3
第一个三角形三个内角都是锐角;第二个三角形有一个内角是直角;第三个三角形有一个内角是钝角。
所有内角都是锐角的三角形叫锐角三角形;有一个内角是直角的三角形叫直角三角形;有一个内角是钝角的三角形叫钝角三角形。
三角形按角分类可分为:
锐角三角形(三个内角都是锐角)
直角三角形(有一个内角是直角)
钝角三角形(有一个内角是钝角)
3、等腰三角形、等边三角形的概念:让学生观察以下三个三角形,它们的边各有什么特点?
1 2 3
经过观察,测量可知:第一个三角形的三边互不相等;第二个三角形有两条边相等(ab=ac);第三个三角形的三边都相等。
(1)等腰三角形:两条边相等的三角形叫等腰三角形。
相等的两边叫做等腰三角形的腰,如上图(2)ab、ac是这个等腰三角形的腰。
(2)等边三角形;三条边都相等的三角形叫等边三角形(或正三角形)
问:等边三角形是不是等腰三角形?
[等边三角形是特殊的等腰三角形,但等腰三角形不一定都是等边三角形]
三角形按边来分,可分为:
三边都不相等的三角形
只有两边相等的三角形
等边三角形
三、巩固练习
教科书图9.1.6中找出等腰三角形、正三角形、锐角三角边、直角三角形、钝角三角形。
四、小结
l、三角形的概念,一个三角形有三个顶点,三条边,三个内角,六个外角,和三角形一个内角相邻的外角有2个,它们是对顶角,若一个顶点只取一个外角,那么只有3个外角。
2、三角形的分类:按角分为三类:①锐角三角形,②直角三角形,③钝角三角形。按边分为三类:①三边都不相等的三角形;②等腰三角形。
等边三角形只是等腰三角形中的一种特殊的三角形。
五、作业
教科书第61页练习1、2.
三角形教案篇3
教学建议
直角三角形全等的判定
知识结构
重点与难点分析:
本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:
(1)由“先教后学”转向“先学后教
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教法建议:
由“先教后学”转向“先学后教”
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的'多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教学目标:
1、知识目标:
(1)掌握已知斜边、直角边画直角三角形的画图方法;
(2)掌握斜边、直角边公理;
(3)能够运用hl公理及其他三角形全等的判定方法进行证明和计算.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过知识的纵横迁移感受数学的系统特征。
教学重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:灵活应用五种方法(sas、asa、aas、sss、hl)来判定直角三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?
这个问题让学生思考分析讨论后回答,教师补充完善。
2、公理的获得
让学生概括出hl公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有斜边和一条直角边对应相等的两个直角三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、判定两个直角三角形全等的方法。
(3)特殊三角形研究思想。
3、公理的应用
(1)讲解例1(投影例1)
例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。
分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。
证明:(略)
(2)讲解例2。学生分析完成,教师注重完成后的点评。)
例2:如图2,△abc中,ad是它的角平分线,且bd=cd,de、df分别垂直于ab、ac,垂足为e、f.
求证:be=cf
分析: be和cf分别在△bde和△cdf中,由条件不能直接证其全等,但可先证明△aed≌△afd,由此得到de=df
证明:(略)
(3)讲解例3(投影例3)
例3:如图3,已知△abc中,∠bac=,ab=ac,ae是过a的一条直线,且b、c在ae的异侧,bd⊥ae于d,ce⊥ae于e,求证:
(1)bd=de+ce
(2)若直线ae绕a点旋转到图4位置时(bd<ce),其余条件不变,问bd与de、ce的关系如何,请证明;
(3)若直线ae绕a点旋转到图5时(bd>ce),其余条件不变,bd与de、ce的关系怎样?请直接写出结果,不须证明
学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。
4、课堂小结:
(1)判定直角三角形全等的方法:5个(sas、asa、aas、sss、hl)在这些方法的条件中都至少包含一条边。
(2)直角三角形判定方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
5、布置作业:
a、书面作业p79#7、9
b、上交作业p80#5、6
板书设计:
探究活动
直角形全等的判定
如图(1)a、e、f、c在一条直线上,ae=cf,过e、f分别作de⊥ac,bf⊥ac,
若ab=cd求证:bd平分ef。若将△dec的边ec沿ac方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。
三角形教案篇4
[教学内容]
北师大版小学数学四年级下册《三角形三条边之间的关系》
[教学目标]
1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。
[教学重、难点]
探索并发现三角形任意两边之和大于第三边。
[教学准备]
学生、老师各准备几个长短不等的小棒、直尺、探究报告单。
[教学过程]
一、摆一摆,激发探究欲望
师:前一节课我们学习了三角形,给你三根小棒,谁能到黑板上围成一个三角形?
(指两名同学到黑板上来。提供的小棒一组能摆成三角形,另一组摆不成三角形。)
在学生摆不出来时,引导学生发现不是任意三根小棒都能摆出三角形来。
师:若想再摆个三角形,你有解决的办法吗?
看来,要想摆成一个三角形,对三条边的长度是有要求的。这节课我们就来研究三角形边的关系。(板书课题)
师:谁来猜一猜,这三条边究竟有什么样的关系呢?
师:你的猜想是否正确呢,我们还是用实验来验证吧。
[反思]这个环节,我首先让学生围三角形,第一名学生不费吹灰之力很顺利地围成了三角形,第二名学生怎么也围不成。这样使学生在具体的操作过程中产生思维冲突,从而提出“数学问题”,有效地激发了学生的探究欲望。课一开始,就牢牢的抓住了学生的心,让学生饶有兴趣的投入到下一轮的学习中去。
二、操作验证,揭示三边关系
(一)分组研究,四人小组长拿出准备好的四组小棒。
出示实验要求:
1、量出每组小棒的长度。
2、将三根小棒首尾相接,看是否能围成三角形。
3、把任意两条边的长度加起来,再与第三边进行比较。(用式子表示)
4、小组讨论,你发现了什么?将实验结果填写在探究报告单上。
(二)小组汇报交流实验结果
结论:三角形任意两边的和大于第三边。(引导学生理解“任意”的意思)
再用这个结论解释实验中围不成三角形的原因。
[反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。
三、应用与拓展
1、判断下面几组线段能否围成三角形,为什么?
(引导学生理解快速判断的方法)
(1)1厘米、3厘米、5厘米
(2)3厘米、5厘米、2厘米
(3)11厘米、6厘米、7厘米
[反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中我充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们引导学生发现,快速判断的方法,使学生在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。
2、小华上学走哪条路近?为什么?(引导学生从多角度解释)
书店
学校
小华家
[反思]:教材是学习的载体,我充分挖掘教材知识之间的联系,。这副情境图既能靠直觉来判断,又能用三角形三条边的关系来解释,还可以用“连接两点的线中,线段最短”来解释。这样既拓展了学生思维的空间,感受到解决问题方法多样性,又领悟到知识与实际的结合,从而使学生认识到生活中处处有数学。
3、一个三角形,其中两条边长是4厘米和6厘米,第三条边长是多少厘米?
(引导学生探究第三边的取值范围)
[反思]:此题设计目的是引导学生发现三角形第三边的取值范围是大于另两边的差,小于另两边的和。教学中开始学生逐渐答出了3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米,接着就沉默了,我就提出了9.2厘米行不行?学生略一思考得出结论:行。于是他们的思维又活跃起来,9.6厘米、9.9厘米……当学生发现小数部分是无限的时,得出结论第三边小于10厘米大于3厘米就可以,于是我又提出问题:现在同学们找到的最小答案是3厘米,2.5厘米行不行?学生经过思考得出答案:第三边要小于10而大于2。由于时间关系,当时我有些着急,直接将我想要学生了解的“第三边的取值范围要大于另两边的差,小于另两边的和”这个结论直接说了出来,结果效果并不是太好。不如让学生自己课下探究“三角形两边之差与第三边的关系”更好。虽然此处处理并不是很恰当,但在这道题中师生、生生之间思维的碰撞,激发了学生探究的意识,培养了学生的质疑探究的能力。
4、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根3米长的木料,假如你是设计师第三根木料会准备多长?并说明理由。
(引导学生实际生活中要讲究美观、实用)
[反思]此题是上一道题的延伸,是培养学生应用数学知识合理解决生活问题的能力。
5、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?
[反思]这是一道要同学动手探究的问题,作为家庭作业学生更愿意做这样的题。
本课总结:同学们的表现非常棒,不仅能猜想,而且能通过实验进行验证,并利用所学知识解决实际问题
三角形教案篇5
教学目标:
1.通过观察、操作活动,认识三角形各部分名称以及底和高的含义,会在三角形内画高。
2.通过实验,积累认识图形的经验和方法。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
教学重难点:
教学重点:概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。
教学难点:会画三角形的高。
教学准备:
课件、磁条。
教学过程
(一)引入
1.
课前谈话引入:
板书:认识三角形
老师带来了一些图片,你能从中找出三角形吗?出示生活中的三角形图片,学生说说生活中的三角形(生活中有哪些物体上有三角形)
(二)探究
1.学生动手操作、老师黑板摆三角形。
(1)师:刚才我们看了这么多的三角形,你能动手画一个吗?
师:这里有同学们画的一些三角形,老师在黑板上也创作了一个三角形,请同学们仔细观察,这些三角形有共同的特点吗?先想一想,再和你的同桌说一说。
哪一位同学来说一说你的发现,
你能找出三角形的3个顶点、3个角、3条边分别在哪里?跟同桌说一说。
利用学生错误资源,出示未首尾相连的图,你能用完整的语言来说一说什么是三角形了吗?
引导学生归纳总结:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。(并板书)
2.
试一试:
刚才同学们都很厉害,你会在方格纸上画三角形吗?先让学生说一说任选三个点是什么意思,再按要求画一画。尽可能多画几个。
思考:都能画出一个三角形吗?
得出结论:三角形的三个顶点不能在同一条直线上。
3.认识三角形的底和高(同学们非常了不起)
(1)同学们,请看这幅图,这是一个人字梁,是建造房屋时房顶的结构,你能量出图中人字梁的高度吗?你量的是哪条线段?它和底边有什么样的位置关系?
(2)学生独立思考,然后小组交流,指名说一说量的是哪一条线段,和下面的横梁在位置上有什么关系。
(3)测量人字梁的高。学生在书上独立测量人字梁的高,交流测量方法及高是多少。
(4)画三角形的高
如果我们把人字梁所表示的三角形画下来,就可以这样表示出它的高和底。(课件出示三角形的高的变化动画,让学生说一说高是如何变化的)
从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。课件出示概念
怎样利用工具规范的画出三角形的一条高呢,请看屏幕演示。(课件)看清楚了吗?
5.
学生做作业纸,不同的边做为底作高,得出三角形也有三条高。
展台展示学生作业,观察你有什么发现?(三条底对应三条高)
(三)巩固
1.
填空
2.
判断
3.
书本量高
4.
书本作高
(四)总结延伸
1.
通过今天的学习,你有哪些收获?
2.
好,同学们请看,老师将三角形的一条边变化一下,还能围成一个三角形吗?
板书设计
认识三角形
三条线段首尾相接围成的图形叫作三角形
3条边
(底)
3个顶点
3个角
高
三角形教案篇6
教学目标:
1、使学生通过直观认识长方体和正方体的形状以及特征。
2、通过学生动手拼一拼、摆一摆,认识长方体和正方体的特征,能辨认和区别这两种图形。
教学重点:认识长方体和正方体的形状以及特征
教学难点:能辨认和区别
教学方法:引导探究法
教学准备:长方形、正方形纸片、小棒
教学过程:
一、复习。
1、出示一些长方体和正方体的实物。
让学生指出哪些是长方体,哪些是正方体。
2、在长方体下面的括号里面画“ ”,正方体的下面括号里面“√”。
3、口答。
长方体有几个面?正方体有几个面?
二、新授。
1、取出两个正方体,可以拼成什么图形?
2、取出三个正方体,可以拼成什么图形?
3、取出八个正方体,可以拼成什么图形?
教师:通过学生自由拼摆,让学生发现长方体和正方体的区别以及之间的关系。
4、取出四个长方体,如:可以拼成什么图形?(一种拼成长方体,一种拼成正方体)
三、巩固练习。
1、完成教科书p5、1。
2、完成教科书p5第5题。
学生独立完成,全班讲评。
3、完成教科书p7第7题。
先让学生观察长方体的上面、前面和右面,并懂得上下、前后以及左右之间的关系,然后进行正确的划线连接。
4、完成教科书p6第五题。
观察:(1)第一行和第三行有什么关系?
(2)第一行和哪几行有关系?
(3)第二行和哪几行有关系?
(4)你发现了什么?
(5)图中缺了几块?你是怎样得出来的?
5、完成教科书p7第六题。
6、完成教科书p7第8题
根据正方体的平面展开图,让学生想象正方体的六个面上分别标的是哪些数字,教师出示实物演示。
三角形教案优质6篇相关文章:
★ 安全教案优质6篇
★ 分笔教案优质6篇