优秀的教案能够激发学生的创造力和思维能力,教师想要更好地调整和优化教学资源和教学环境,就要认真准备好教案,以下是好文溜溜小编精心为您推荐的有理数加法的教案6篇,供大家参考。
有理数加法的教案篇1
师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。(教师板书课题:有理数的加法)
请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
生1:加数都是正数或都是负数。(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)
师:还有其他情况吗?
生2:正数与零,负数与零,或者两个都是零
师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?
生3:向东走了8米
师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。(教师用投影仪显示图1)
②先向西走了5米,再向西走了3米,结果如何?
生5:向西走了8米。可以表示为:(-5)+(-3)=-8[教师板书]
(教师用投影仪显示图2)
③向东走了5米,再向西走了3米,结果呢?
生6:向东走了2米。可以表示为:(+5)+(-3)=+2[教师板
(教师用投影仪显示图3)
④先向西走了5米,再向东走了3米,结果呢?
生7:向西走了2米。可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)
⑤先向东走5米,再向西走5米,结果呢?
生8:回到原地位置。可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)
⑥先向西走5米,再向东走5米,结果呢?
生9:仍回到原地位置。可以表示为:(-5)+(+5)=0[教师板书]
(教师用投影仪显示图6)
师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。(教师用投影仪显示下面内容):
从河岸现在水位线开始,规定上升为正,下降为负:
①上升8cm,再上升6cm,结果怎样?②下降8cm,再下降6cm,结果怎样?
③上升6cm,再下降8cm,结果怎样?④下降6cm,再上升8cm,结果怎
⑤上升8cm,再下降8cm,结果怎样?⑥下降8cm,再上升0cm,结果怎样?
师:下面同学们分组讨论,互相订正。
教师公布正确答案:
①上升14cm。 [教师板书(+8)+(+6)=+14]
②下降14cm。 [教师板书(-8)+(-6)=-14]
③下降2cm。 [教师板书(+6)+(-8)=-2]
④上升2cm。 [教师板书(-6)+(+8)=+2]
⑤回到原水位线。 [教师板书(+8)+(-8)=0]
⑥在原水位下线下8cm。 [教师板书(-8)+0=-8]
师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。
小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。
师:其他小组还有没有新的发现什么?
小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。
师:这一小组的看法是否正确呢?
小组3:不正确。因为(+6)+(-8)=-2,(-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。
小组4:这句话也不对,如(+3)+(-5)=-2中,和的符号是负的,但+3比-5大,应改为:和的符号与绝对值大的加数符号一样。师:还有没有不同意见?
小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。
师:观察仔细,很好。
师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了
符号部分外,另一部分称为结果的什么?
众生:结果的绝对值
师:结果的绝对值与加数绝对值又有何关系呢?
小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。
师:请同学归纳,总结出有理数的加法规律。
小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。
师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?
小组8:有,一个数同0相加,仍是这个数。
师:全班同学共同说出有理数的加法法则。
教(板书):有理数加法法则:
①同号两数相加,取加数的符号,并把绝对值相加;
②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
③一个数同0相加,仍是这个数。
(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:
1、通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。
2、以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。
3、再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。
4、分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)
有理数加法的教案篇2
教学目标
1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。
3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。
重点难点重点:
了解有理数加法的意义,会根据有理数加法进行运算。
难点:
有理数加法中的异号两数的加法运算。
教学过程
一、问题情境
小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?
5+3=8
如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?
(-5)+(-3)=-8
如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?
5+(-3)=2
足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。
图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?
二、知识点拔:
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。
三、例题指导
例1 计算
(1) (-3)+(-9)
(2) (-4.7)+3.9
解:(1)(-3)+(-9)=-(3+9)
=-12
(2)(-4.7)+3.9=-(4.7-3.9)
=-0.8
四、练习巩固:p22 1、2。
五、小结:
这节课我们学习了哪些知识?
六、作业:
习题1.3 1、8、12题
有理数加法的教案篇3
(一)知识与技能目标
1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想
(三)情感态度与价值观目标
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:
重点:
理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则 三、教学组织与教材处理:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
四、教学流程
(一)引入新知---新师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1” ,净胜球数应是(+1)+(-1) =0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1) + (+1) =0的式子说明。 (二)探究新知---行
1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个 表示 +1,用 1个 表示 -1,那么就表示0。
2、师:首先我们一起来计算(+2)+(+3)。教师演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4) + 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。
3、师:同学们,其实我们还可以用数轴来表示刚才这几道题的运算过程。出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的方法运算(-3)+2,3+(-2),(-4) + 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)
(三)发现新知---省
1、教师引导学生观察刚才的五个例子:
问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。
2、师生共同得出有理数加法法则
同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。
(四)运用新知---信 1、范例讲解:
例1 计算下列各题:
①180+(-10);
②(-10)+(-1);
③5+(-5);
④ 0+(-2).
教师引导学生先观察符号特征,再教师示范写出过程。
解:(1)180+(-10)(异号型 ) =+(180-10)(取绝对值较大的数的符号, =170 并用较大的绝对值减去较小的绝对值)
②(-10)+(-1) (同号型) =-(10+1) (取相同的符号,并把绝对值相加)对于③④ 小题,可以让学生口答。
2、解后思:
教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话: ①确定类型、②确定符号、③确定绝对值。
3、说一说
(口答)确定下列各题中的符号,并说明理由:
(1) (+5)+(+ 7); (2) (- 10) +(- 3) (3) (+ 6)+(-5)
(4) (+ 3)+(-8)
注:此题意在强化对有理数加法的符号判断,特别是异号的情形着重反馈矫正 4、练一练
1、计算下列各式:(1) (-25)+(-7); (2)(-13)+5;(3) (-23)+0; (4)45+(-45)。
2、土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?注:此两题意在对有理数加法法则的巩固和引导学生运用有理数的加法解决实际问题。第一题教师先让学生独立完成,并请四个学生演板。做完后小组之间开展互评,正误怎样?有什么值得改 进的地方?对于第二题教师请男女两个同学比赛进行演板,师给与评价。
5、想一想
请根据 式子(-4)+3,举出一个恰当的生活情境;(聪明的你能举出多少种新情境?)注:此例意在引导学生关注“生活中的数学”。对于学生有创意的情境师应给与积极评价。(符合此式子的情境有很多,如:温度变化问题、足球净胜球问题、方向行走问题、收入支出问题、水位涨落问题等等)
(五)反省新知---谈一谈 我学到了什么?
教师引导学生自我反省、自我评价。 师生共同总结:1、有理数的加法法则,2、运算时的基本思路。
(六)挑战老师
师说:通过今天的学习,老师认为:“ 两个有理数相加,和一定大于其中一个加数”。老师的说法正确吗?请聪明的你举例说明。
(七)超越自我
分别在右图的圆圈内填上彼此不相等的数,使得 条线上的数之和为零,你有几种填法?
(八)布置作业。
附:“新、行、省、信”
------------我的四字教育法
一、“新”
1、新的教学理念(“春风不让一木枯”);
2、新的学习方式(“自主、合作、交流、探究”);
3、新的评价体系(制定《成长档案袋》内设“单元知识总结”、“自己独特的解法”、“提出挑战性问题”、“探究性活动记录”、“自我评价与小组评价”,从而动态、全方位评价学生)。
二、“行” 1、有品行(引导学生养成良好的数学学习习惯和培养良好的情感与价值观); 2、有行动(培养学生主动探究、参与合作和交流的意识)。
有理数加法的教案篇4
一、教学内容
?有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
?设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
?设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
?设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
?设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a
(3) 如果a>0,b|b|,那么a+b____0;(4) 如果a0, |a|【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a
(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)(4) 如果a0, |a|(5)a+0=a.
?设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
?设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
?设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)p56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
?设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数加法的教案篇5
教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、 有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、 就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。
1、知识目标是:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是;
(1)渗透由特殊到一般的辩证唯物主义思想:
(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程()的设计帘具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程()中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程()中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程()中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上就是差异网为大家整理的3篇《《有理数的加法》教案》,能够给予您一定的参考与启发,是差异网的价值所在。
有理数加法的教案篇6
教学目标
1. 会把有理数的加减法混合运算统一为加法运算;
2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想.
教学重点
把有理数的加减法混合运算统一为加法运算.
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本p37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本p38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本p39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
有理数加法的教案6篇相关文章:
★ 加法教案5篇
★ 加法教案最新7篇