凭借筹办好教案,能够更好地根据具体情况对课堂进度进行规律安排,优秀的教案是每一位教师都会提前准备的文件,好文溜溜小编今天就为您带来了完全平方教案6篇,相信一定会对你有所帮助。
完全平方教案篇1
教学过程
一、议一议
探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即( )x = x y,由单项式乘以单项式法则可得(x y)x = x y,因此,x yx =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果. 教师板书: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
二、做一做
巩固新知例1计算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体 (一个字母)相除,后用完全平方公式计算.教师板书如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b
三、随堂练习
p40 1学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.
四、小结
本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:
1.系数相除与同底数幂相除的区别;
2.符号问题;
3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业课本习题1.15.p41 1、2. 3
完全平方教案篇2
学习目标:
1、会推导完全平方公式,并能用几何图形解释公式;
2、利用公式进行熟练地计算;
3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的认知规律。
学习过程:
(一)自主探索
1、计算:(1)(a+b)2 (2)(a-b)2
2、你能用文字叙述以上的结论吗?
(二)合作交流:
你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。
(三)试一试,我能行。
1、利用完全平方公式计算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[来源:中.考.资.源.网]
(四)巩固练习
利用完全平方公式计算:
a组:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
b组:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
c组:
(1)1012 (2)542 (3)9972
(五)小结与反思
我的收获:
我的疑惑:
(六)达标检测
1、(a-b)2=a2+b2+ .
2、(a+2b)2= .
3、如果(x+4)2=x2+kx+16,那么k= .
4、计算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
完全平方教案篇3
一、教学目标
(1) 知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。
(2) 过程与方法目标;学生探究完全平方公式,体会数形结合。
二、教学重点;
公式结构及运用。
三、教学难点;
公式中字母ab的含义理解与公式正确运用。
四、教具;
自制长方形、正方形卡片
五、教学过程;
教师活动
学生活动
1、 创设情景,提出问题,引入课题
(1) 想一想
1.一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。
(1) 第一天,a个男孩去看老人,老人共给他们几块糖?
(2) 第二天,个女孩子去看望老人,老人共给他们多少块糖?
(3) 第三天,( )个孩子一起去看望老人,老人共给他们多少块糖?
(4) 第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)
2、 学生四人一组讨论。
填空:
(1)第一天给孩子 块糖。
(2)第二天给孩子 块糖。
(3)第三天给孩子 块糖。
男孩子第三天多得 块糖
女孩第三天多得 块糖。
(2) 做一做、请同学拼图
a教师巡视指导学生拼图
1、 教师提问:
(1)、大正方形边长?
(2)每一块卡片的面积是多少?
(3)用不同形式表示正方形总面积,比较发现什么?
2、 想一想
(1)(a +b )用多项式乘法法则说明
(2)( a -b )
3、请同学们自己叙述上面的等式
4、说一说,a b能表示什么?
(□+○) □+2□○+○
5、算一算
(1)(2X-3)(2)(4X+5Y)
请同学们分清a b
6、练一练
(1)(2X-3Y) (2)(2XY-3X)
7、试一试(a+b+c)
作业:
P135 1、2
学生2人一组拼图交流
2、学生观察思考
(1) 大正方形边长?
(2) 四块卡片的面积分别是
(3) 大正方形的总面积是多少?
3、
(1)学生运用多项式乘法法则推导
(a+b)=a+2ab+b说出每一步运算理由
(2)学生自己探究交流
4、学生用语言叙述公式
5、师生共同a、b对应项 教师书写
6、学生独立完成练一练展示结果
7、学生四人一组讨论交流
完全平方教案篇4
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
学生讨论,教师归纳,得出结果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2. 请点击下载word版完整教案:新人教版八年级数学上册《完全平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!
完全平方教案篇5
一、学习目标
1.会运用完全平方公式进行一些数的简便运算
二、学习重点
运用完全平方公式进行一些数的简便运算
三、学习难点
灵活运用平方差和完全平方公式进行整式的简便运算
四、学习设计
(一)预习准备
(1)预习书p26-27
(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[
(3)预习作业:1.利用完全平方公式计算
(1)(2) (3)(4)
2.计算:
(1) (2)
(二)学习过程
平方差公式和完全平方公式的逆运用
由 反之
反之
1、填空:
(1)(2)(3)
(4)(5)
(6)
(7)若,则k=
(8)若是完全平方式,则k=
例1计算:1. 2.
现在我们从几何角度去解释完全平方公式:
从图(1)中可以看出大正方形的边长是a+b,
它是由两个小正方形和两个矩形组成,所以
大正方形的面积等于这四个图形的面积之和.
则s= =
即:
如图(2)中,大正方形的边长是a,它的面积是 ;矩形dcge与矩形bchf是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形hcgm的边长是b,其面积就是 ;正方形afme的边长是 ,所以它的面积是 .从图中可以看出正方形aemf的面积等于正方形abcd的面积减去两个矩形dcge和bchf的面积再加上正方形hcgm的面积.也就是:(a-b)2= .这也正好符合完全平方公式.
例2.计算:
(1) (2)
变式训练:
(1) (2)
(3) (4)(x+5)2–(x-2)(x-3)
(5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)
拓展:1、(1)已知,则=
(2)已知,求________,________
(3)不论为任意有理数,的值总是()
a.负数b.零c.正数d.不小于2
2、(1)已知,求和的值。
(2)已知,求的值。
(3).已知,求的值
回顾小结
1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。
2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。
完全平方教案篇6
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
五、教学媒体:多媒体
六、教学和活动过程:
教学过程设计如下:
?一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
?二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的.语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
?三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小试牛??
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
?四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
?五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/52b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
?六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
?七〉[作业] p34 随堂练习 p36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。
完全平方教案6篇相关文章: