量概念的数学教案5篇

时间:
loser
分享
下载本文

通过认真准备好教案,我们可以更好地培养学生的信息获取和处理能力,教案的编写要注重培养学生的实际应用能力和创新能力,以下是好文溜溜小编精心为您推荐的量概念的数学教案5篇,供大家参考。

量概念的数学教案5篇

量概念的数学教案篇1

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1.复习初中所学函数的概念,强调函数的模型化思想;

2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国xxxx年4月份非典疫情统计:

日期222324252627282930

新增确诊病例数1061058910311312698152101

3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

二、新课教学

(一)函数的有关概念

1.函数的概念:

设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数(function).

记作:y=f(x),x∈a.

其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).

注意:

○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素:

定义域、对应关系和值域

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

4.一次函数、二次函数、反比例函数的定义域和值域讨论

(由学生完成,师生共同分析讲评)

(二)典型例题

1.求函数定义域

课本p20例1

解:(略)

说明:

○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

○3函数的定义域、值域要写成集合或区间的形式.

巩固练习:课本p22第1题

2.判断两个函数是否为同一函数

课本p21例2

解:(略)

说明:

○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

巩固练习:

○1课本p22第2题

○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=

(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=

(三)课堂练习

求下列函数的定义域

(1)

(2)

(3)

(4)

(5)

(6)

三、归纳小结,强化思想

从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

四、作业布置

课本p28习题1.2(a组)第1—7题(b组)第1题

量概念的数学教案篇2

教学目标:

使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

教学重点:

函数的概念,函数定义域的求法.

教学难点:

函数概念的理解.

教学过程:

Ⅰ.课题导入

[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

问题一:y=1(xr)是函数吗?

问题二:y=x与y=x2x 是同一个函数吗?

(学生思考,很难回答)

[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

Ⅱ.讲授新课

[师]下面我们先看两个非空集合a、b的元素之间的一些对应关系的例子.

在(1)中,对应关系是乘2,即对于集合a中的每一个数n,集合b中都有一个数2n和它对应.

在(2)中,对应关系是求平方,即对于集合a中的每一个数m,集合b中都有一个平方数m2和它对应.

在(3)中,对应关系是求倒数,即对于集合a中的每一个数x,集合b中都有一个数 1x 和它对应.

请同学们观察3个对应,它们分别是怎样形式的对应呢?

[生]一对一、二对一、一对一.

[师]这3个对应的共同特点是什么呢?

[生甲]对于集合a中的任意一个数,按照某种对应关系,集合b中都有惟一的数和它对应.

[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

现在我们把函数的概念进一步叙述如下:(板书)

设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有惟一确定的数f(x)和它对应,那么就称f︰ab为从集合a到集合b的一个函数.

记作:y=f(x),xa

其中x叫自变量,x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xa}叫函数的值域.

一次函数f(x)=ax+b(a0)的定义域是r,值域也是r.对于r中的任意一个数x,在r中都有一个数f(x)=ax+b(a0)和它对应.

反比例函数f(x)=kx (k0)的定义域是a={x|x0},值域是b={f(x)|f(x)0},对于a中的任意一个实数x,在b中都有一个实数f(x)= kx (k0)和它对应.

二次函数f(x)=ax2+bx+c(a0)的定义域是r,值域是当a0时b={f(x)|f(x)4ac-b24a };当a0时,b={f(x)|f(x)4ac-b24a },它使得r中的任意一个数x与b中的数f(x)=ax2+bx+c(a0)对应.

函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

y=1(xr)是函数,因为对于实数集r中的任何一个数x,按照对应关系函数值是1,在r中y都有惟一确定的值1与它对应,所以说y是x的函数.

y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是r,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

[师]理解函数的定义,我们应该注意些什么呢?

(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

注意:①函数是非空数集到非空数集上的一种对应.

②符号f:ab表示a到b的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

③集合a中数的任意性,集合b中数的惟一性.

④f表示对应关系,在不同的函数中,f的具体含义不一样.

⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、f(x)、g(x)等符号来表示

Ⅲ.例题分析

[例1]求下列函数的定义域.

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

解:(1)x-20,即x2时,1x-2 有意义

这个函数的定义域是{x|x2}

(2)3x+20,即x-23 时3x+2 有意义

函数y=3x+2 的定义域是[-23 ,+)

(3) x+10 x2

这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

注意:函数的定义域可用三种方法表示:不等式、集合、区间.

从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

(1)如果f(x)是整式,那么函数的定义域是实数集r;

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

下面我们来看求函数式的值应该怎样进行呢?

[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

[师]生乙的回答完整吗?

[生]完整!(课本上就是如生乙所述那样写的).

[师]大家说,判定两个函数是否相同的依据是什么?

[生]函数的定义.

[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

(无人回答)

[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

(生恍然大悟,我们怎么就没想到呢?)

[例2]求下列函数的值域

(1)y=1-2x (xr) (2)y=|x|-1 x{-2,-1,0,1,2}

(3)y=x2+4x+3 (-31)

分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

解:(1)yr

(2)y{1,0,-1}

(3)画出y=x2+4x+3(-31)的图象,如图所示,

当x[-3,1]时,得y[-1,8]

Ⅳ.课堂练习

课本p24练习17.

Ⅴ.课时小结

本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

Ⅵ.课后作业

课本p28,习题1、2. 文 章来

量概念的数学教案篇3

教学内容

1、用联系的、发展的思想指导教学,借助多媒体课件突出概念之间的联系与发展。让学生在多媒体的动态演示中,充分感知概念之间的联系与发展中,从而形成知识的建构,知识链就非常清晰。

2、细化操作,把发现、归纳的主动权交给学生。让学生通过看一看、议一议、画一画等手段,让学生充分感受概念的形成,从而形成正确的概念,顺理成章的由他们自己得出定义。

教学目标:

1、学生认识射线,能正确区分直线、线段和射线;使学生进一步认识角,理解角的概念,认识表示角的符号;理解角的大小跟角的两边叉开的大小有关,与边长无关。会直接比较角的大小。

2、正确画射线,会用角的符号记角。

3、通过观察、操作、比较、猜想等数学活动,培养学生的创新精神,发展空间观念;通过小组讨论等学习形式,使学生学会合作,学会评价。

教学重点、难点、关键:

重点:建立射线的概念;理解角的概念;会直接比较角的大小。

难点:使学生理解角的边是两条射线,角的大小跟角两边叉开的大小有关; 关键:通过观察、操作、比较等活动培养学生的空间观念,建立正确表象。

教具准备:

多媒体课件

教学过程:

一、导入新课。

师:我们已经学过了直线和线段,你还记得它们的特点吗?

1、电脑动态显示直线,电脑显示在直线上选两点,并呈现

2、生回答。

3、师根据学生回答板书:直线它是直的,没有端点,可以向两边无限延长线段也是直的,有两个端点,不能无限延长,有限长

4、师小结:刚才同学们的表现非常出色,请你们继续努力。

二、认识射线

1、在我把线段的一端无限延长,又得到这样的一条线,它叫什么?(有的同学可能知道是射线,因此没有直接给出。)(板书射线)(电脑动态演示)

2、师:把线段的另一端也无限延长,就又得到一条什么?

生:射线

3、师: 那么,射线是怎么得到的呢?

生:把线段的一端无限延长,就得到一条射线(电脑出示:把线段的一端无限延长,就得到一条射线)

4、 师:射线又有什么特点呢?

生:也是直的生:有一个端点,可以向一个方向无限延长

生:它的长度也是无限长的。

5、根据学生回答板书:射线,直的,一个端点,无限长

6、 画一画

师:先画一个点,在从这个点出发,你能画射线吗?能画几条?

生画后师:说一说是你是怎么画的.?

生:先画一个点,再从这个点开始往随便哪个方向画

师:从一点出发能画几条射线?

生::从一点出发可以画无数条射线。

7、课件演示:从一点可以引出无数条射线

8、师:日常生活中,哪些东西可以看作射线呢?

生:太阳射出的光

生:电筒射出的光

生:x光

……

9、师:观察比较直线、线段、射线三者之间有什么联系和区别?(借助多媒体演示,从直线到线段再到射线,由已知到未知,形象鲜明,感受充分,从动态的角度认识射线并归纳三者的联系与区别,学生水到渠成,印象深刻。)

三、认识角。

1、继续看“从一点可以引出无数条射线课件”

2、问:在这里你发现了什么新的图形?

3、小组讨论交流

4、学生到课件前边指边回答。(学生能够指出来角)先画一个点,再从这个点出发画两条射线,看一看你们画出来的是什么图形?(角)

5、师在黑板上画上一个角

观察老师画的角:怎样的图形是角?根据学生回答板书:从一点引出两条射线所组成的图形是角(课件展示角的概念)

6、 师介绍角各部分的名称(课件展示记法)(板书:顶点、边)

生指出黑板上角的顶点与边

问:一个角有几个顶点几条边?

7、介绍角的符号,给角标号 1 、2

8、举例,日常生活中,你能找到角吗?

9、你自己能画吗?

10、判断那些是角,哪些不是角?

(充分尊重学生,让学生在画一画、议一议的基础上,自己归纳出角的定义,并通过从实际生活中寻找角,更深刻的认识角的特征,再根据特征进行辨析判断,操作细腻、到位。)

11、角的大小

(1)、师出示活动角,通过演示让学生感受角的大小。

(2)、 角1、角 2 角3哪个角大,哪个角小?你是怎么知道的?(用眼睛看)

(3)、屏幕出示两个大小差不多的角,哪个大哪个小呢?

议:在眼睛不能直接看出大小时,有没有更好的比较办法呢?

生说后电脑演示叠得比较的过程

指明生说一说如何比较

生说后电脑演示比较

12、 议一议:角的大小究竟与什么有关,与什么无关?

小结:角的大小与边张开的大小有关,与边的长短无关。(板书)

(围绕角的大小与什么有关与什么无关,设计了直观感知角的大小,用眼睛判断角的大小,用重叠法比较角的大小几个层次,层层深入。并借助多媒体技术清楚地显示比较的过程,让学生较好地掌握重叠法比较的方法)

四、综合实践练习(见课件)

数角时:从联系的观点从点到射线到一个角再到更多的角,让学生深刻地感受到几个概念间的联系,巩固角的概念。

五、课堂总结

1、 这节课你有什么收获?

2、 还有什么疑惑吗?

3、 学生如果有,解疑。本节课采用多媒体组合教学设计,让学生充分感受各个概念间联系与区别,效果颇好,主要有以下特点:

1、 充分发挥多媒体技术的作用,揭示各概念之间的联系。直线、线段、射线三个概念是互相联系与发展的,运用多媒体手段让学生通过动态的演示,生动、直观,学生理解。

2、 巧妙运用对比法进行教学,揭示各概念之间的区别。在揭示直线、线段、射线三个概念的联系时,引导学生进行比教;在教学角的大小时,不光揭示出角的大小与什么有关,而且揭示了角的大小与什么没关,形成对比,使学生对角的大小更加清晰、明了。

3、 为学生自主得出概念的内涵与外延积极创造条件,让学生通过画一画、比一比、议一议等手段,充分感受概念的形成,从而自己概括出概念的规范定义。

量概念的数学教案篇4

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

二、重难点的确定

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

六、教学过程

(一)创设情景,引入新课

情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。

名次

1

2

3

4

5

6

7

8

9

10

得分

情景2:汽车的行驶速度为时过早80千米/小时,汽车行驶的距离y与行驶时间x之间的关系式为:y=80x

情景3:某市一天24小时内的气温变化图:(图略)

提问(1):这三个例子中都涉及到了几个变化的量?(两个)

提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)

提问(3):这样的关系在初中称之为什么?(函数)引出课题

[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。

这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

(二)探索新知,形成概念

1、引导分析,探求特征

思考:如何用集合的语言来阐述上述三个问题的共同特征?

[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)

[设计意图]引导学生观察,培养观察问题,分析问题的能力。

提问(5):两个集合的元素之间具有怎样的关系?(对应)

及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。

2、抽象归纳,引出概念

提问(6):现在你能从集合角度说说这三个问题的共同点吗?

[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。

板书:函数的概念

上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

3、探求定义,提出注意

提问(7):你觉得这个定义中应注意哪些问题?

[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

2、例题剖析,强化概念

例1、判断下列对应是否为函数:

(1)

(2)

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1);

(2)y=x-1;

(3);

(4)

[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

例3、试求下列函数的定义域与值域:

(1)

(2)

[设计意图]让学体会理解函数的三要素。

4、巩固练习,运用概念

书本练习p24:1,2,3,4

5、课堂小结,提升思想

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

七、教学评价

1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。

2、为使课堂形式更加丰富,也可将某些问题改成判断题。

3、在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理

4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。

量概念的数学教案篇5

【高考要求】:三角函数的有关概念(b).

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

【教学重难点】: 终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

【知识复习与自学质疑】

一、问题.

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与 终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习.

1.给出下列命题:

(1)小于 的角是锐角;(2)若 是第一象限的角,则 必为第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2 与角 的终边不可能相同;

(7)若角 与角 有相同的终边,则角( 的终边必在 轴的非负半轴上。其中正确的命题的序号是

2.设p 点是角终边上一点,且满足 则 的值是

3.一个扇形弧aob 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦ab长=

4.若 则角 的终边在 象限。

5.在直角坐标系中,若角 与角 的终边互为反向延长线,则角 与角 之间的关系是

6.若 是第三象限的角,则- , 的终边落在何处?

【交流展示、互动探究与精讲点拨】

例1.如图, 分别是角 的终边.

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在 上所有角的集合;

(3)求始边在om位置,终边在on位置的所有角的集合.

例2.(1)已知角的终边在直线 上,求 的值;

(2)已知角的终边上有一点a ,求 的值。

例3.若 ,则 在第 象限.

例4.若一扇形的周长为20 ,则当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角 的终边上一点的坐标为 ,则角 的弧度数为 .

2、若 ,又 是第二,第三象限角,则 的取值范围是 .

3、一个半径为 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是 弧度或角度,该扇形的面积是 .

4、已知点p 在第三象限,则 角终边在第 象限.

5、设角 的终边过点p ,则 的值为 .

6、已知角 的终边上一点p 且 ,求 和 的值.

【迁移应用】

1、经过3小时35分钟,分针转过的角的弧度是 .时针转过的角的弧度数是 .

2、若点p 在第一象限,则在 内 的取值范围是 .

3、若点p从(1,0)出发,沿单位圆 逆时针方向运动 弧长到达q点,则q点坐标为 .

4、如果 为小于360 的正角,且角 的7倍数的角的终边与这个角的终边重合,求角 的值.

量概念的数学教案5篇相关文章:

幼儿数学10的形成教案5篇

大班数学《有趣的数字》教案5篇

三年级数学毫米的认识教案5篇

大班数学10以内的减法教案5篇

数字8的教案中班教案最新5篇

关于水的科学教案中班教案推荐5篇

一年级数学10的认识教案5篇

中班美术教案我的小手教案5篇

小学数学鸡兔同笼的教案5篇

拼音g的教案大班教案5篇

量概念的数学教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
81403